
1 INTRODUCTION 
In Germany, the dominant approach concerning 

the disposal of heat-generating radioactive waste is 
based on isolation by geological barriers and aims to 
achieve complete containment (Krone et al., 2011). 
Hence, it is natural to consider salt rocks, claystone 
formations or sites with multiple salt-claystone bar-
riers as host rock systems (Minkley, 2009). 

 
Undisturbed saliferous rocks are impermeable to 

fluids and gases. This is supported by natural ana-
logues (Minkley & Knauth, 2013). For example, ter-
tiary volcanism has left local deposits of supercriti-
cal CO2 up to 100,000 m3 contained in rock salt 
until today. In contrast, the overall volume of heat-
generating radioactive waste in Germany is 10,000 m3 for borehole and 40,000 m3 for drift em-
placement (VSG a, 2012). 

Salt formations can lose their geomechanical in-
tegrity and leak tightness if (a) the groundwater 
pressure or a gas pressure exceeds the minimal stress 
in the salt formation or if (b) dilational damage oc-
curs. The first process seems to be the most relevant 
process for the overall barrier integrity (Minkley et 
al., 2013). The minimal stress may be lowered due 
to extensional strain conditions, either by subsidence 
or by thermo-mechanically induced lift-up of the 
rock mass above the mining horizon or the reposito-
ry area. 

 

So far, all cases where rock salt barriers lost their 
integrity, the barriers were rather thin (≲ 100 m), 
and confining pressures were low. Such conditions 
are typical for salt mines in shallow depths (Minkley 
& Knauth, 2013). If the barrier is sufficiently thick, 
salt mines are safe from water inflow even under 
earthquake-like incidents, as can be seen from a 
dozen rock bursts worldwide with macroseismic ep-
icentral intensities up to VIII-IX (Minkley, 2004). In 
extreme cases, surface fractures several metres wide 
and open cracks in the salt rock hanging wall have 
not led to loss of integrity of the salt-claystone mul-
ti-barrier system. 

 
On the one hand, bedded salt provides a simple 

geological structure and a robust multi-barrier sys-
tem due to the following reasons: The natural, undis-
turbed geological layering with watertight insoluble 
claystone layers above the soluble salt rocks com-
bines the advantages of salt and claystone concepts 
for the disposal of heat-generating nuclear waste. 
Salt domes, on the other hand, have a huge basement 
salt thickness particularly suitable for borehole em-
placement. 

 
The conventional containment mechanism relies 

on the compaction of crushed salt backfill by the 
convergence of the host rock, with residual porosity 
over a long time. Novel experimental results show 
that immediate complete containment as well as re-
trievability of the waste can be achieved by using 
eutectic molten salts as backfill material, which are 
kept liquid by the waste-generated heat. Hence, the 
waste canisters in borehole emplacement could be 

Integrity of saliferous barriers for heat-generating radioactive 
waste – natural analogues and geomechanical requirements 

W. Minkley, D. Brückner, M. Knauth, C. Lüdeling 
IfG Institut für Gebirgsmechanik GmbH, Friederikenstr. 60, 04279 Leipzig, Deutschland 
 

 
 

 
 

 
ABSTRACT: We argue for the integrity and tightness of saliferous barriers over geological timescales by 
considering examples of large-volume gas or fluid intrusions in supercritical phases. These were created by 
volcanic activity about 20 million years ago and are still trapped in salt deposit today. These natural analogues 
serve as long-term experiments which show that complete containment of heat-generating nuclear waste in 
salt rocks is possible. As an alternative to crushed salt as geotechnical barrier, we propose using salt mixtures 
with melting points in the range of 100°C–200°C and present first experimental results. This approach com-
bines the advantages of immediate complete containment, negligible volume compaction (thus no squeeze-out 
of contaminants by convergence), and retrievability at any time.



easil
canis
salt. 
poin
of ye
impe
the o
cont
mate
lete. 

 
In

logu
in sa
impe
will 
posit
Secti
perim
HITE
chan
conc

 

2 

In
CO2 
20 M
tiary
tion 
ous 
trans
parti
ing 
main
The 

Figur

ly retrieved.
sters becaus

When the
nt (in the ran
ears, the m
ermeable sa
outset there 
amination 
erial to the 
 

n the follow
ues, i.e. exam
alt rocks for
ermeability 
outline the 
tory and ou
ion 5 we re
ments on 
EC salt, and

nics of molt
cluding in S

COMPLET
ROCK: NA

n the Werra
penetrated 

Mio years ag
y volcanism 

with basalt
solution) r

sformed som
icular the e
and recrys

nly in secon
gas can be

re 1: Phase dia

. Furthermo
se of the hig
e temperatu
nge of 100°

molten salt s
alt mass like

would be n
scenario w
biosphere 

wing, we wil
mples of hi
r geological
of rock sal
requiremen

ur proposal f
eport results

the perme
d in Section
ten salt back
ection 7. 

TE CONT
ATURAL A
a salt depo
into the bed

go by magm
and are stil

tic magmati
rose into th
me of the 
asily solub

stallisation, 
ndary sylvi
e stored pre

agram of CO2 

ore, water ca
gher density
ure reaches° െ 150°C) 
solidifies an
e the host ro
no residual 

with transpo
by fluids w

ll first discu
gh-pressure
l times, wh
lt. In Sectio
nts for a nu
for molten 
s from first 
eability of 
n 6 we discu
kfill in mor

TAINMENT
ANALOGUE

sit, enormo
dded salt fo

matic intrusi
ll stored tod
ism, CO2 (g
he salt dep

primordial
le carnalliti
the CO2 

inite (Giese
edominantly

annot reach
y of the mo
s the freez
after hundr

nd becomes
ock. Since fr
pore volum
ort of harm
would be ob

uss natural a
e fluids trap
ich support

ons 3 and 4,
uclear waste
salt backfill
laboratory 

f recrystalli
uss the geo
e detail, bef

T IN SA
ES 
ous amounts
ormations ab
ions during 
day. In asso
gas or in aq
osits, wher

salt rocks
ite. After co
was depos

el et al., 19
y on the g

h the 
olten 
zing 
reds 
s an 
from 

me, a 
mful 
bso-

ana-
pped 
t the 
, we 
e re-
l. In 
ex-

ised 
ome-
fore 

ALT 

s of 
bout 
ter-

ocia-
que-
re it 
s, in 
ool-

sited 
89). 

grain 

bou
frac
sur
crit
Exp
dril
pha
of t
on 
and
Sim
ma
aro

A
salt
lon
cau
mil

2.1
G

freq
the 
trig
min
in t
abo
cav
to 
lion
ejec
nal
in a
hav
pre

Fig
zon
isot
tem
a te
am 
blas

undaries (m
ctures (free 
e, the gas w
tical phase 
posure of tr
lling leads 
ase associat
the order o
grain boun

d pneumatic
milar outbu
in compone

ound the wo
As natural 
t and their a

ng-term bar
use highly c
llions of yea

 Outburs
Gas release
quent in th
largest in t

ggered on 
ne by a rem
the mine, b
ove ground 
vity of abou
the hangin

n cubic met
cted and e
litite (Jungh
a depth of 
ve been in 
essure drop

ure 2: Volum
ntal axis show
thermal expan

mperature drop
emperature dr

HD (Dekam
sting.) 

mineral-boun
CO2). Due 

will general
(see the ph

rapped high
to a phase

ted with vo
f 500 (see 
daries, this 
cally expel 
rsts, often 
ent, are kno
rld; see e.g.
analogues, 

associated p
rrier integri
compressed
ars. 

ts in the We
es induced 
he Werra po
the world. T
07 June 19

mote-contro
ut the eject
(Junghans,

ut 100 m lon
ng wall roc
res of gas (
xpelled 60,
hans, 1955)
588 m bein
the liquid s

ps to atmo

me increase aft
ws initial press
nsion at 20°C
p from 20°C to
op from 31°C

mon) expands 

nd CO2) or
 to the high
lly be in a 
hase diagra

h-pressure g
e transition
olume incre

Figure 2). 
will fragm
the debris
involving 

own from o
. Ehgartner 
these gas i

phenomena 
ity of salt 
d fluids are

erra district
by blasting

otash distri
The first ma
953 in the

olled blast. N
ted CO2 kil
, 1953). Th
ng, reaching
ck salt. Mo
(Duchrow e
,000 t of s
). With lith

ng 14.4 MPa
state (see F

ospheric pre

ter a pressure 
sure). The red
C, the blue (d
o 0°C. The sin

C to 0°C. (For
by a factor 

r in caverns
h lithostatic 

liquid or su
am in Figur
as by blasti

to the gas
ases by a f
For gas tra

ment the salt
 (Salzer, 1
methane a
other salt m
et al. (1998
intrusions i
demonstrat
formations

e preserved 

t 
g or drilling
ct, among 

ajor outburs
e Menzengr
No miners 
lled three pe
e outburst 
g about 20 m
ore than a 
t al., 1988) 
alt, mainly

hostatic pre
a, the CO2
Figure 1). W
essure of 

drop to 1 bar
d (solid) curve
dashed) curve
ngle black do
r comparison:
of about 780

s and 
pres-
uper-
re 1). 
ng or 
seous 
factor 
apped 
t rock 
989). 
s the 

mines 
8). 
n the 
te the 
s, be-

over 

g are 
them 
t was 
raben 
were 
eople 
left a 
m in-

mil-
were 

y car-
essure 

must 
When 
1 bar 

r (hori-
e is for
e for a
t is for
 Riox-

0 upon



(0.1 
Figu
from
volu

T
vinit
sumi
nalli
incre
gas v

C
of sa
Apri
zeng
into 
Sinc
be es

A
explo
in th
hole 950 
thick
be e
nalli
throu
metr
blow

T
37 m
five 
pit. D
the t
of ab
suriz
ier (
high
of ab

 
B

01 O
was 

Figur
rock s

MPa), the 
ure 2). Assu
m the expel
ume of 1.4 ⋅
The world´s 
te ejected 1
ing a poros
tite) in the
ease by a fa
volume of 2

CO2 can be 
alt rocks (so
il 1958, an
graben mine

the relative
e the gas di
stimated at 

Another CO
oration hole

he Unterbre
drilled fro
m (situated

kness of car
explored for
tite bulge. 
ugh the 58 
res in the M
wer was trig
Through th
mm), enorm

million cub
Due to the 
rapped CO2
bout 10,000
zed gas at th
30 to 35 m

h) in the rock
bout 30°C (F

By far the 
October 201

triggered b

re 3: CO2 gla
salt (CO2 bec

gas expand
uming a me
lled materia10 m3.  

largest gas110,000 t o
sity of 8% 

e gas-contai
actor of 500
2 million cu
ejected wit

o-called “blo
n explorati
e hit a CO2
ely small m
id not leave
about 5 ⋅ 10

O2 gas blow
e, occurred 
eizbach pota
om a lower 
d in the Lo
rnallitite in
r a subsequ
The vertic
metres of c

Middle Wer
gered. 

he explorat
ous volume

bic metres, o
supercritica
2, this corre0 m3. The c
he exit of th

m long, 5 to 
k salt drift, 
Figure 3).  

largest CO
3 in Unterb

by a blast i

acier after an
comes solid be

ds by a fact
ean salt por
al we can 

s and salt o
of salt (Salz

(i.e. lower
ining sylvin
0 (see Figu

ubic metres. 
thout associ
ower” or blo
on drilling
2 pocket. T

mine and kil
e the mine, t0ହ m3.  

w-out, again
on 27 to 3

ash mine. W
drift in a 

ower Werra
n the hangin
uent recove
al hole had
carnallitite 
rra rock salt

tion hole 
es, later esti
of CO2 gas 
al state (22 
esponds to a
cooling of th
he hole form

6 m wide 
at an ambie

O2 outburs
breizbach (s
in the (carn

n underground
elow -70°C). 

tor of 495 (
rosity of 10
estimate a 

outburst in S
zer, 1991). 
r than for 
nite, a volu

ure 2) implie
 

iated expuls
ow-out). On

g in the M
The gas flow
led six min
the volume 

n caused by
0 August 2
With a vert
depth of ab

a rock salt) 
ng wall wa
ery of the 
d been pier
and stood f
t when the 

(diameter 
imated at ab
flowed into
MPa, 31°C

a cavity volu
he highly p

med a CO2 g
and up to 3

ent tempera

t occurred 
ee Figure 4

nallitite) pot

d gas blow-ou

(see 
0 %, 

gas 

Syl-
As-
car-
ume 
es a 

sion 
n 17 

Men-
wed 

ners. 
can 

y an 
2003 
tical 
bout 

the 
as to 
car-
rced 
four 
gas 

of 
bout 
o the 
C) of 
ume 

pres-
glac-
3 m 

ature 

on 
4). It 
tash 

sea
pro
abo
rem
pre
sur
exp
mat
the 
was
the 
vol
ers 

P
31°
Ass
um
one
free
cub
this

T
roc
tim

2.2
It i
ern
visc
rou
sur
eve
driv

F
We
low

ut in

Figu

am Thuring
otective barr
out 100,000
maining salt
essure (22 M
e), and the 

pansion dist
tter of min
shaft, abou

s so strong
Unterbreiz

lume of the
mines.  
Pressure an
°C) again im
suming that

me were crea
e arrives at a
e CO2. The
bic metres o
s case.  

These exam
ck salt can tr

mes. 

 Outburs
s well-know

ns in salt roc
coplastic b

unding rock
e. In the ro

en exceed li
ven fluid pe

Figure 5 sk
erra deposit
wer, middle 

ure 4: Outburs

ia in a dep
rier of only 0 m3 in the r
t barrier cou

MPa, corresp
CO2 explod

tributed the 
nutes and k
ut 7 km from

that gas a
zbach II sha

connected 

nd tempera
mply an exp
t 20% of the
ated by the 
a volume of
e additional
of mineral-b

mples from
rap fluids u

t cavities an
wn that in a
ck, the brine
behaviour (
k salt until 
of of high 

ithostatic pr
ercolation (M

ketches the 
t. The Werr
and upper 

st cavity in Un

pth of 900 
a few mete
rock salt ha
uld not wit
ponding to 
ded into the
CO2 in the 

killed three 
m the burst 
and dust we
aft in spite o

Unterbreiz

ature cond
pansion by 
e 100,000 m
ejection of 
f 40 million
l release of 
bound CO2

m potash mi
under high p

nd tightness
abandoned 
e pressure g
(convergenc
it reaches 
caverns, br

ressure, lead
Minkley et 

geological 
ra rock salt
series by th

nterbreizbach 

m, which l
ers to a cave
anging wall.
thstand the 
lithostatic 

e pit. The s
whole mine
miners clo
point. The 

ere ejected 
of the enorm

zbach and M

ditions (22 M
a factor of

m3 of cavity
rock salt de

n cubic metr
f about 2 m
2 is negligib

ining show
pressure for

s 
gas storage
grows due t
ce) of the 
lithostatic 

rine pressure
ding to pres
al., 2013). 

situation i
t is divided
he potash s

left a 
ern of 
. This 
fluid 
pres-
trong 
e in a 

ose to 
blast 
from 
mous 

Merk-

MPa, 
f 500. 
y vol-
ebris, 
res of 
illion 
ble in 

w that 
r long 

e cav-
to the 

sur-
pres-
e can 
ssure-

n the 
d into 
seams 



Thur
burst
ately
abou
the r
cated
sion,
surfa
tend
simil

T
the t
ern: 
form
nyin
creat
ra ro

F
proc
by l
(red,
along
ing s
tion 
rock
in Fi
spon

H
mati
in ro
burst

Figur
Werra

Figur

ringia and H
t in Unterb

y above the
ut 180 m an
roof of the s
d immediat
, which has
ace. One mi
s more or 
lar to the ba

The horizon
tertiary volc
High tempe

med carnalli
ng volume r
ted systems

ock salt. 
igure 7 sho
ess, simula
ongwall mi
, below yel
g a length o
system of cr
of elongate

k strata in th
igure 6). A 
ndingly lead
Hence, volu

on of potas
ock salt. In 
t, volcanic 

re 6: Geometr
a rock salt abo

re 5: Geologic

Hesse. The 
breizbach 20
e seam Th
nd height o
seam (see F
ely west of
s basalt col
ight thus as
less horizo

asaltic intru
ntal extensio
canic proce
eratures par
tite into sy
reduction b
s of cavities

ows a geom
ating the slic
ining: The 
llow band) 
of 100 m. Th
racks above

ed horizonta
he hanging 
larger volum

d to larger ca
ume reducti
sh salts gen
the case o
CO2, origin

ry of the terti
ove the potash

cal profile of t

cavity crea
013, startin

huringia, ha
f 67 m as m

Figure 6). Th
f the Arzber
lumns reac
k why the C
ontal rather

usions (see F
on can be 
esses that cr
rtially or co
lvinite, with

by as much
s in the hang

mechanical 
ce-like reco
height of 
was decre

he figure sh
e the seam a
al cavities b
wall (cf. th
me reductio
avities.  
ion by the
nerates hori

of the Unter
nating from

iary CO2 cav
h seam Thurin

the Werra salt

ated by the o
ng out imm
as a length
measured fr
he cavern is
rg basalt in
hing up to 
CO2 cavern
r than vert

Figure 5).  
traced back
reated the c
mpletely tra
h an accom

h as 50%. T
ging wall W

model of 
overy of pot
a potash se

eased by 3.
hows the res
and the gen

by separation
e cavern sh

on would co

ermal trans
izontal cave
rbreizbach o

m the same 

ern in the mi
ngia. 

t deposit. (Sou

out-
medi-
h of 
from 
s lo-
ntru-

the 
n ex-
tical 

k to 
cav-
ans-

mpa-
This 

Wer-

this 
tash 
eam 
.5 m 
sult-

nera-
n of 

hape 
orre-

sfor-
erns 
out-
ter-

tiar
into
the
yea

E
ic 
driv
(M
imp
0.8
roc
er 
ana
ten
hig

3

G
com
VS
one
cus
tain
can
ble 

T
in s
iou

iddle

urce: K+S AG

Figu
wal
Not

ry volcanism
o a cavern 
re in a sup

ars.  
Even thoug
pressure in
ven percola
inkley et al
plies an ex
 MPa. The 

ck successfu
strata for g
alogue, this 
tial of salt 

gh-pressure 

REQUIRE
DISPOSA

Germany´s 
mprises abo
G a (2012)

e million ye
ssed in Sec
nment of 10
n conclude t

for nuclear
The concep
salt formatio

ur of salt roc

G) 

ure 7: Geome
ll due to hori
te the inclined

m that crea
of about 1

percritical s

gh the CO2 w
n a supercr
ation occur
l., 2013).  T
xcess press

hydraulic 
ully inhibite
geological ti

clearly dem
rocks over 
fluids. 

EMENTS F
AL 

heat-genera
out 40,000
)) and need
ears. From 
ction 2, wh0ସ to 10ହ m
that a repos
r waste disp
pt of perma
ons is based
ck, which fo

chanical mod
zontal volum

d fracture deve

ated the ca10ହ m3 and
state for ab

was trapped
ritical phas
rred from t
The cavern
sure at the
tensile stre

ed the perco
timescales. 
monstrates t
millions of

FOR NUC

ating nuclea0 m3 (includ
ds to be iso

the natura
hich show 
m3 of superc
sitory in sa

posal. 
anent compl
d on the vis
orms a barr

del of disturba
me reduction i
elopment. 

avities, mig
d stayed tra
bout 20 m

d under litho
se, no pres
the cavern 

n height of 
e roof of a
ength of the
olation into 
As a geolo
the isolation
f years, eve

LEAR WA

ar waste is s
ding contai
olated for a
l analogues
permanent 

critical CO2
lt rocks is s

lete contain
scoplastic be
rier imperm

ances in the ha
in the potash 

grated 
apped 
illion 

ostat-
ssure-

roof 
67 m 
about 
e salt 
high-

ogical 
n po-

en for 

ASTE 

solid, 
iners, 
about 
s dis-

con-
2, one 
suita-

nment 
ehav-
eable 

anging
seam.



to fluids up to the lithostatic pressure (minimal stress 
criterion, Minkley (2009)). Rock salt is a polycrys-
talline sediment with no connected pore space. In 
contrast to other rocks, it reacts to slowly acting 
stresses with creep deformation, without developing 
fractures or joint systems like crystalline hard rock. 
Furthermore, the water content is very low (e.g. 
<0.2% in domal salt, respectively <1% in bedded 
salt), such that mass transport only occurs as diffu-
sion along the grain boundaries (Hansen, 2014) 
without advective flow. Hence, the transport rate is 
orders of magnitude below e.g. diffusion through a 
fluid-filled pore space in clay (GRS, 2008).  

Thus, the geological barrier salt allows, if the ge-
otechnical barriers are similarly tight, a complete 
containment of nuclear waste, i.e. no emission of 
contaminants into the biosphere. This is in contrast 
to a safe containment in other repository options 
such as claystone or granite with limited release of 
radionuclides. The long-term geological analogues 
discussed in Section 2 support this scenario. 

It remains to be checked to which extent com-
plete containment is compatible with retrievability, 
as required by the Federal Ministry of the Environ-
ment (BMU, 2010). The BMU stipulates that 

• waste containers must be recoverable from 
the closed and abandoned repository for 
500 years, and 

• the measures to ensure retrievability must not 
impair the passive barriers and thus the re-
pository´s long-term safety. 

The concepts of reversibility and retrievability 
while maintaining the passive safety and the robust-

ness of the geological and technical barriers have the 
potential to play a significant role in public ac-
ceptance of geological disposal (OECD/NEA, 2012). 
 

For drift emplacement in salt formations, retriev-
ability does not constitute a restriction with regard to 
complete containment. A re-mining of backfilled 
drifts and subsequent excavation of the waste con-
tainers in rock salt is technically feasible without 
major changes to the disposal concept. 

For borehole emplacement, on the other hand, 
combining retrievability and complete containment 
is an unsolved problem so far. Lining the boreholes 
with steel tubes, as suggested in VSG a (2012), 
would prevent the rock salt convergence and hence 
the containment. In addition, some deformation of 
the boreholes, which are hundreds of metres deep, 
cannot be excluded and would defy the original re-
trievability purpose. Filling the annular space of the 
boreholes with a porous material such as silica sand 
(VSG c, 2013) would also form permanent fluid 
pathways to the waste containers. 

 
In the following, we will suggest an alternative 

geotechnical concept to combine the main advantage 
of salt, i.e. complete containment, with the require-
ment of retrievability. The new concept is based on a 
robust geological and an instantaneous and com-
pletely isolating geotechnical barrier.  

 

Figure 8: Servohydraulic testing machine and experimental setup for permeability measurements. Flow rates are measured at the
top (labelled by ݍ). 
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of barrier integrity have basically stopped, and the 
salt dome behaviour is again dominated by the geo-
logical situation, under which salt has demonstrated 
its long-term integrity and isolation capacity (see 
Section 2). 

7 SUMMARY AND CONCLUSIONS 
Natural analogues known from salt and potash min-
ing show that gases such as CO2 are trapped in salt 
rocks in gaseous, liquid and supercritical form over 
geological timescales. For example, CO2 which mi-
grated into the Werra salt deposit during tertiary 
volcanism was contained in cavities of volumes up 
to 100,000 m3 for about 20 million years. Due to the 
viscoplastic behaviour of the host rock, the pressure 
in these fluids was equal to the lithostatic (overbur-
den) pressure. 

The German supply of heat-generating nuclear 
waste comprises about 40,000 m3 (including con-
tainers) and is, in contrast to supercritical CO2-
fluids, in a solid state, i.e. less mobile. Because it is 
a very limited volume, it could be, in principle, de-
posited in a single salt cavern. However, to reduce 
the thermomechanical load of the surrounding salt 
rock barrier the waste containers are distributed over 
a larger area (drift emplacement) or volume (bore-
hole emplacement). In particular, this reduces the 
perturbed regions at the top of the salt deposit where 
the minimal principal stress is lower than the acting 
ground water pressure (i.e. the violation of the min-

imal stress criterion initiating pressure-driven perco-
lation).  

However, in salt domes we prefer the borehole 
concept, because the waste is emplaced at greater 
depth which favours the tight inclusion due to the 
salt visco-plastic behaviour.  To meet the require-
ment of retrievability, we propose a novel backfill 
material, i.e. the use of (eutectic) salt mixtures with 
low melting points, rather than the usual crushed salt 
with high initial porosity. Salt mixtures with melting 
points in the region of 100°C to 200°C are used as 
heat-exchange fluids in various industrial applica-
tions, e.g. for solarthermal power plants. Similar 
mixtures have been proposed as combined fuel and 
heat exchange fluid in fourth-generation nuclear re-
actors. In the repository, the heat generated by the 
nuclear waste would keep the backfill in a liquid 
state for centuries before it slowly recrystallises.  

Laboratory investigations at the IfG have shown 
that recrystallised HITEC salt is impermeable to flu-
ids similar to natural rock salt loses its integrity only 
for fluid pressures above the minimal principal 
stress. 

This backfill concept with molten salt for reposi-
tories for heat-generating nuclear waste has several 
distinct advantages: 

• Immediate and complete containment of the 
waste containers in the molten salt, 

• no water or brine access to the containers due 
to the higher density of the backfill, 

• no squeeze-out of contaminated solutions by 
creep convergence, 

Figure 14: Model of borehole emplacement in the Gorleben salt dome 30 years after emplacement. The figures span 
1400 m× 1400 m each. Left panel: Temperature in K, right panel: ratio of minimal principal stress to groundwater pressure (mini-
mal stress criterion). The criterion is violated for values smaller than one, i.e. purple, red and pink (above blue dashed line). 



• only slight volume reduction upon recrystal-
lisation, 

• and retrievability at any time. 
 
The thermomechanical disturbance of the salt 

barrier could be further reduced by dispersing the 
waste-generated heat, using the molten salt as heat 
exchange fluid. As an additional benefit, one could 
envisage the generation of energy, somewhat similar 
to a geothermal power plant or a radiothermal gen-
erator. In this case, the efficiency could be increased 
by concentrating the waste in a smaller volume. On 
the other hand, the integrity of the geological and 
geotechnical barriers has to be ensured even if the 
heat dispersal is stopped prematurely.  

We think the use of low-melting salt mixture 
backfill as a geotechnical barrier warrants – and 
needs – further modelling, laboratory and in-situ 
studies. This includes the calculation of the spatial 
and temporal evolution of the temperature field in 
the emplacement area, the analysis of the geochemi-
cal long-term stability of the molten salts in contact 
with the host rock and the demonstration of the fea-
sibility of the technical concept. 
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